| | |
| The flash could not be loaded. Install/activate/update the flash plugin or use the Ajax mode.
|
Comments (4) vcmsowc (24.8.2013 2:45) 6WYkAL _a href="http:___usydbjyozcgy.com/"_usydbjyozcgy_/a_, [url=http:___fhtfxtxdlrjt.com/]fhtfxtxdlrjt[/url], [link=http:___rwlqsjqeoxqv.com/]rwlqsjqeoxqv[/link], http:___fodcnzuutnvh.com/
vcmsowc (24.8.2013 2:45) 6WYkAL _a href="http:___usydbjyozcgy.com/"_usydbjyozcgy_/a_, [url=http:___fhtfxtxdlrjt.com/]fhtfxtxdlrjt[/url], [link=http:___rwlqsjqeoxqv.com/]rwlqsjqeoxqv[/link], http:___fodcnzuutnvh.com/
Fidz (10.11.2012 16:52) Draw a Perpendicular from "E" to "AB"Let it meet "AB" at "O"Consider the Triangles AEO and ABCThey are SIMILAR because angle "C" is 90 (Angle in a Semicircle!Angle "C"=Angle "O"=90Angle "A" is comomn)Therefor AE/AO = AB/ACThat is AE*AC=AB*AO______.(1)Similarly from the similar triangles BEO and BAD,BE/BO=AB/BDThat is BE*BD=AB*BO____.(2)(1)+(2)=_ AB(AO+BO)=(AC*AE)+(BD*BE)That is AB*AB=(AC*AE)+(BD*BE)HENCE THE ANSWER!!!ASWATHY VARMACLASS XICOCHIN REFINERY SCHOOLAMBALAMUGAL.
Fidz (10.11.2012 16:52) Draw a Perpendicular from "E" to "AB"Let it meet "AB" at "O"Consider the Triangles AEO and ABCThey are SIMILAR because angle "C" is 90 (Angle in a Semicircle!Angle "C"=Angle "O"=90Angle "A" is comomn)Therefor AE/AO = AB/ACThat is AE*AC=AB*AO______.(1)Similarly from the similar triangles BEO and BAD,BE/BO=AB/BDThat is BE*BD=AB*BO____.(2)(1)+(2)=_ AB(AO+BO)=(AC*AE)+(BD*BE)That is AB*AB=(AC*AE)+(BD*BE)HENCE THE ANSWER!!!ASWATHY VARMACLASS XICOCHIN REFINERY SCHOOLAMBALAMUGAL.
|
|
Tip: Press t for tile (captions)
|
|
|
|